IARU Amateur Satellite Frequency Coordination |
Pleiades - Sapling Giganteum | Updated: 04 Apr 2022 | Responsible Operator | Flynn Dreilinger KN6HCC | |
Supporting Organisation | Stanford Student Space Initiative (SSI) & Bronco Space | |||
Contact Person | flynnd@stanford.edu.nospam | |||
Headline Details: A 1U mission. Sapling has two primary missions. The first is to prove critical subsystems of the Sapling CubeSat Bus. The Sapling project is entirely open source and developed by members of the Stanford Student Space Initiative, a primarily undergraduate volunteer student engineering organization at Stanford University. Proposing a UHF downlink using LoRa. Transmission format is LoRa with BW = 125 kHz, Spreading Factor = 12, Coding Rate = 8, Preamble Length = 8. In the event of a change of LoRa parameters, details will be published on the SSI github here: https://github.com/stanford-ssi/sapling. Telemetry is formatted according to TinyGS requirements. https://github.com/G4lile0/tinyGS/wiki No launch opportunity has been confirmed. The second is a demonstration of the broader Pleiades Swarm Initiative, which exists to develop and demonstrate distributed spacecraft technology. This initial demonstration will demonstrate satellite-to-satellite and satellite-to-satellite-to-ground relays. Depending on final orbital parameters, the ultimate goal will be a ground-to-satellite-to-satellite-to-ground link between a station operated by students at Bronco Space at Cal Poly Pomona, and a station operated by students at Student Space Initiative at Stanford (great circle distance of 543 km). 5.5 Explain in plain text how your mission(s) complies with provisions no. 1.56, 1.57 and 25 (see Annex 1); how will your mission contribute to the advancement of the amateur satellite service; and how will amateur operators around the globe be able to participate in your mission, besides just receiving the satellite telemetry? The radio-networking demonstration of this mission is a collaboration between student groups who wish to use a network of satellites to send simple messages between two universities, and then build upon this experience to build a more complex radio networking swarm of satellites. The hardware tested and software developed by this networking demonstration may enable amateur satellites to achieve over the horizon radio relays without requiring a medium or high Earth orbit relay node. The mission will continue to demonstrate the effectiveness of LoRa for spacecraft telemetry and command. Amateur operators and satellite hobbyists may use this information to build their own CubeSats, or because all spacecraft built for this project are open source, they may directly replicate the Sapling spacecraft to act as a known foundation for their own missions. If the radio networking demonstration is successful, amateurs using the correct LoRa modulation and packet structures could conceivably relay their own packets through the network when it is not actively in use by Cal Poly or Stanford operators. As with all amateur satellite missions, the prospect of catching a telemetry packet will inspire other students around the world to pursue radio communications and other satellite possibilities of their own imagination. **A downlink 437.400 MHz has been coordinated** | ||||
Application Date: | 19 Nov 2021 | Freq coordination completed on | 04 Apr 2022 |
The IARU Amateur Satellite Frequency Coordination Status pages are hosted
by AMSAT-UK as a service to the world wide Amateur Satellite Community
|